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Abstract

Rod photoreceptors have the remarkable ability to respond to a single photon. A photon
absorption triggers the activation of a receptor which is subsequently amplified by the activation
of only 5-10 molecules. Because of such low numbers, the activation process has to be proceed in
a coordinated manner in order to generate a reproducible signal. In addition, this signal has to
overcome the background noise generated by spontaneous activations and deactivation of millions
of enzymatic molecules. We review here recent modeling and stochastic analysis of the molecular
events underlying the single photon response and the background noise. The homogenization
procedure of the rod geometry is the first step for reducing the three into one dimensional, so
that numerical simulations become possible and reveal the fundamental relation between proteins
concentrations, biochemical rate constanct and rod geometry. The stochastic modeling is used
to analyse electrophysiological recordings and to extract in vivo biochemical constants. Modeling
phototransduction has evolved at the far front of cell transduction and system and thus the
approach presented here can be apply to any transduction mechanisms.

1 Introduction

Signal transduction at a single molecular level is based on stochastic biochemical events occurring
in constrained cellular microdomains. Molecular fluctuations in the transduction pathway generate
a cellular background noise, which sets the limit of cell detection. This limit is generic to most of
transduction mechanisms that consists of converting a molecular signal into a cellular response. For
photoreceptors, light (photons) is transformed into a cellular change of the voltage potential called a
hyperpolarization (decrease of the voltage) due to the exit of ions, For olfactory cells, a single odorant
molecule can activate a flow of ions through voltage gated channels. During synaptic transmission,
neurotransmitters generate a local depolarization. Finally, a transcription factor in the cell nucleus
activates or regulate genes, leading to protein expression. In all of this example a molecular signal
lead to a cellular response, but how such a signal overcome the noise and what is the nature of the
molecular and cellular noise. We will explore this question based on modeling and analysis of the
single photon response in photoreceptors.

A key step in the cellular response to a small molecular event is the amplification of the signal,
which occurs by a protein (G-protein )cascades. Of all the G-protein cascades in nature, the best-
understood are those initiated by the absorption of a photon in Drosophila microvilli [1, 2] and in
the outer segment (OS) of vertebrate rod photoreceptors (Fig. 1) [1, 3, 4]. The rods of amphibians
and mammals have been shown to have the remarkable ability to detect single-photons of light above
background noise [5, 6]. But amphibian and mammalian rods differ in concentrations and biochemical
properties of proteins involved in the light response, and by as much as an order of magnitude in the
diameter of their disk membranes, where the reactions of the cascade take place. It remains largely
unknown how the biochemistry and the geometry adapt to guarantee a reliable macroscopic response
initiated by a single molecular event.
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We summarize in this review recent progress in mathematical modeling of single photon response
in rod photoreceptors. The modeling, analysis and simulations combines several methods. First, be-
cause it is yet not possible to model millions of interacting molecules, the three dimensional geometry
of the rod geometry is reduced to a one dimension. This is possible because diffusion in a thin cylin-
der is well approximated by a one dimension process. In that context, reaction-diffusion equations
can be written for the subcellular molecular interactions occurring inside the rod structure. Second,
there a geometrical separation between chemical reactions occurring on the membrane and others
inside the three dimensional cytoplasm. This geometrical separation allows studying separately two-
an three- dimensional chemical reactions. Two dimensional chemical-reactions do not rely on suffer
from geometrical confinement and studied using a Markov chains. However, connecting the output
of two-dimensional reactions with the three dimensional ones uses the one-dimensional diffusion re-
duction approximation. The overall reduced modeling allows to perform stochastic simulations that
explain the variability in the biochemistry and allow to study the major source of noise during a
single-photon response.

We recall briefly that noise in the photoreceptor is generated by the fluctuations in the activity
of a critical enzyme called phosphodiesterase (PDE). This enzyme fulfills two essential functions.
First, the phosphodiesterase that becomes activated through the transduction cascade after a pho-
ton absorption (light-activated PDE) increases the hydrolysis of cGMP, a diffusible second messenger
controlling the opening of ionic membrane channels, leading to channel closure and cell hyperpolar-
ization; second, spontaneously activated PDE is necessary to maintain in darkness a steady-state
cGMP concentration and to set the cGMP turnover rate, an important determinant of the time scale
of the photon response [7, 8] (Fig. 2). Fluctuations in the number of spontaneously activated PDEs
generate a background noise that is commonly referred to as the dark noise [9, 7, 10]. The main
source of variability in the amplitude of the single-photon response is due to variability in the number
of light-activated PDEs [11, 12, 6, 13].

Photon response curve and noise generated within the transduction cascade are evaluated using
spatially resolved reaction-diffusion equations and stochastic simulations of PDE activations at the
level of single molecules. We present here a summary of multiscale simulations that account for the
molecular details (PDE activations and cGMP hydrolysis) and the intrinsic molecular noise called
dark noise. The result of the simulations can be directly compared to experimental recordings and
the analytical expressions for the dark noise power spectrum are used to extract the values of key
parameters from the analysis of measured current recorded in Wild type (WT) and but also in
genetically modified cells such as Caps−/− knockout mice.

This review is organized as follows: in the first part, we present the homogenization procedure
to reduce the three-dimensional rod outer-segment geometry to a one dimensional with an effective
diffusion coefficient. In the second part, Markov chains are used for modeling the stochastic activation
of PDE molecules following a photon absorption. We also present the modeling of the spontaneous
PDE activation. In the third, we analyze the Laplace equation to computing the cGMP hydrolysis
rate, based on the narrow escape theory in narrow band [14]. In section four, we introduce the coupled
system of equations for cGMP and calcium currents. In section five, we present the stochastic
simulations of a single photon response. Finally, in the last section, we explain how numerical
simulations are used to extract biophysical parameters from dark noise recordings and single photon
response.
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Fig. 1: Geometrical organization of rod and cone photoreceptors. (A)Electron Microcopy
(EM) image of rods and cones located in the retina. (B) Schematic modeling of a rod and a cone
showing their polarized structure: light sensitive outer segment, inner segment with nucleus and
synaptic terminal.(C) Cross section of a rod outer segment: internal disks divide the outer segment
into almost independent cylindrical compartments.
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2 Modeling phosphodiesterase (PDE) activation after a photon ab-
sorption using Markov chain

To simulate the time course of the stochastic number of activated PDE P ∗ following a single photon
absorption, we use Markov chain [15] (see also [16]): after photon absorption, a rhodopsin molecule
undergoes a conformational modification and changes from an inactive R into an active R∗

N state,
where N is the total number of available phosphorylation sites. The R∗

N phosphorylation are cat-
alyzed by a rhodopsin kinase (RK) that gradually reduces the activity of rhodopsin (Fig. 2A-B).
Through phosphorylation, rhodopsin in the state R∗

n undergoes a transition to state R∗
n−1, modelled

by the state dependent Poissonian phosphorylation rate λn. R∗
n activates the G-protein transducin

T ∗ with rate kn, which constitutes an amplification process. A T ∗ transducin binds to a single PDE
with a rate µt and forms a complex denoted by P ∗ (see Fig 2A-C), which subsequently deactivates
with rate µp. Eventually, the rhodopsin R∗

n becomes deactivated through another molecule arrestin
binding with a rate µn. The kinetic reactions are summarized as follows (see table 1)

R∗
n

λn−→ R∗
n−1

R∗
n

µn−→ R

R∗
n + T

kn−→ R∗
n + T ∗ (1)

T ∗ + P
µt−→ P ∗

P ∗ µp−→ P

The state of the signalling process is described by three stochastic variables integer values (n, l, k),

Table 1: Parameters for PDE activation

Parameter Definition

P̄ ∗
sp,comp Mean number of spontaneous actived PDE molecules per compartment

P̄ ∗
li,max Mean of the peak number of light-activated PDE

ρpde PDE surface density

νsp Spontaneous PDE activation rate

µsp Spontaneous PDE deactivation rate

µli Deactivation rate for light-activated PDE

τrh Activated Rhodopsin lifetime

Np Number of Rhodopsin phosphorylation steps

γrt,max Maximal transducin activation rate

ω Decay rate of transducin activation with the number of phosphorylation steps

γtp Rate by which activated transducin activates PDE

which are the phosphorylation state 0 ≤ n ≤ N of R∗ (n corresponds to the number of remaining
unphosphorylated sites), the number 0 ≤ l ≤ ∞ of T∗ and 0 ≤ k ≤ ∞ for P∗. The joint probability
Pn(l, k, t) satisfies the Master equation

∂

∂t
Pn(l, k, t) = λn+1Pn+1(l, k, t) + knPn(l − 1, k, t)

+µt(l + 1)Pn(l + 1, k − 1, t) + µp(k + 1)Pn(l, k + 1, t)

− (λn + µn + kn + µtl + µpk)Pn(l, k, t). (2)
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In state n = 0, all sites are phosphorylated and λ0 = 0. After a photon absorption, R∗ is in state n =
N and the number of T ∗ and P ∗ are zero. The initial condition is given by Pn(l, k, 0) = δn,Nδl,0δk,0,
where (δi,j is the Kronecker symbol).

2.1 First and second moment (Mean and variance) of rhodopsin lifetime distri-
bution

The mean and variance of R∗ lifetime can be computed from the probabilities Pn(t) to find R∗ in
state n at time t. By summing Eq. 2 over l and k, the probability vector P⃗ (t) = (PN (t), . . . , P0(t))

⊤

satisfies the equation

d

dt
P⃗ (t) = S P⃗ (t) with S =


−βN
λN −βN−1

...
λ1 −β0

 (3)

and βn = λn + µn. To compute the mean R∗ lifetime, we integrate Eq. 3 using the initial condition
P⃗ (0) = (1, . . . , 0)⊤ and we use that P⃗ (t) vanishes for t → ∞. We obtain for the mean time

τ̄ =
N∑

n=0

∫ ∞

0
Pn(t)dt = −Tr

(
S−1P⃗ (0)

)
=

N∑
n=0

1

βn

N∏
k=n+1

pk , (4)

with pn = λn
βn

. Eq. 4 has an intuitive interpretation: it is the sum of mean lifetimes 1
βn

in each state
n multiplied by the probability to reach this state before being deactivated via arrestin binding (see
also fig. 2E).

The variance is computed by integration by parts in the relation

Στ = −
N∑

n=0

∫ ∞

0
t2

d

dt
Pn(t)dt− τ̄2 =

N∑
n=0

∫ ∞

0
2tPn(t)dt− τ̄2 = 2Tr

(
S−2P⃗ (0)

)
− τ̄2

= 2

N∑
n=0

n∑
j=0

1

βn

1

βj

N∏
k=j+1

pk − τ̄2 . (5)

The coefficient of variation (CV) of R∗ lifetime (Fano factor) has a lower bound that depends only
on the number of phosphorylation sites N [15]. Indeed using Eq. 4 and Eq. 5, we have

CVτ =

√
Στ

τ̄
≥ 1√

N
. (6)

The minimum CVτ = 1√
N

is achieved for βn = const and pn = 1. The first condition reduces the

lifetime variability of the various deactivation states. The latter condition requires that arrestin binds
only when R∗ is fully phosphorylated, which maximizes the effective number of deactivation steps.

2.2 Stochastic analysis of the number of activated PDE

As shown in the previous paragraph, multiple phosphorylations of the rhodospin molecule reduces
the CVτ and lead to a more reliable R∗ deactivation process. Is a reliable R∗ deactivation process
leads to a minimal variance in the number of P ∗? how multiple phosphorylations affect the mean
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and variance of the number of activated PDE? In particular, does a low CVτ entail a low CV of
the number of activated PDE? The answer to these questions is based on a system of differential
equations to compute numerically the time dependent mean and variance of P ∗ and the mean and
variance of the total number of P ∗ that are activated during a single photon response. We now
present such equations.

2.2.1 System of differential equations for mean and variance

The mean and variance that depend only on the phosphorylation state n of R∗ can be computed by
decomposing the matrix S into a sum of left eigenvectors. By decomposing the activation rate vector
k⃗ = (kN , . . . , k0)

⊤ into N eigenvectors k⃗i of the matrix S, we get

k⃗ =

N∑
i=0

k⃗i with k⃗⊤i S = −βik⃗
⊤
i , (7)

we obtain for the individual mean values the relation

d

dt
k̄i(t) =

d

dt

N∑
n=0

ki,nPn(t) =

N∑
n,m=0

ki,nSn,mPm(t) = −βik̄i(t) . (8)

Together with the initial condition P⃗ (0) = (1, . . . , 0)⊤, we get

k̄(t) =
N∑
i=0

k̄i(t) =
N∑
i=0

ki,N e−βit . (9)

Similarly, the variance Σk(t) =
∑N

n=0 k
2
nPn(t) − k̄(t)2 is calculated by decomposing the vector x⃗ =

(k2N , . . . , k20).
We now present the time dependent mean and variance of PDE defined by

P̄ (t) =

N∑
n=0

∞∑
l,k=0

kPn(l, k, t) and Σp(t) =

N∑
n=0

∞∑
l,k=0

k2Pn(l, k, t)− P̄ (t)2. (10)

Using Eq. 2, it is possible to obtain a closed system of differential equations for the mean and
cross-correlations,

d

dt
T̄ (t) = −µtT̄ (t) + k̄(t)

d

dt
P̄ (t) = −µpP̄ (t) + µtT̄ (t)

d

dt
Σt(t) = −2µtΣt(t) + µtT̄ (t) + 2Σkt(t) + k̄(t)

d

dt
Σp(t) = −2µpΣp(t) + 2µtΣtp(t) + µtT̄ (t) + µpP̄ (t)

d

dt
Σtp(t) = −(µt + µp)Σtp(t) + µtΣt(t)− µtT̄ (t) + Σkp(t) .

(11)

The mean activation rate k̄(t) can be computed independently and therefore is an input function.
To close this system we need additional equations for Σkp(t) and Σkt(t). Using the decomposition

in Eq. 7, we write

Σkt(t) =
∑
i

Σkit(t) and Σkp(t) =
∑
i

Σkip(t) . (12)
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Finally, the missing equations that close the system are

d

dt
Σkit(t) = −(βi + µt)Σkit(t) +

∑
j

Σkikj (t)

d

dt
Σkip(t) = −(βi + µp)Σ

2
kip

(t) + µtΣkit(t) .

(13)

The correlation functions Σkikj (t) =
∑

n ki,nkj,nPn(t)− k̄i(t)k̄j(t) and k̄(t) are known functions.

2.3 Stochastic dynamics of the number of activated PDE

To further investigate how the variability of R∗ deactivation can influence the production of P ∗, it
is useful to compute the mean P̄tot and variance Σptot of the total number of P ∗ produced during
a SPR. This computation is obtained by setting the P ∗ deactivation rate to zero, µp = 0, in which
case all P ∗ are conserved. We obtain

P̄tot =

∫ ∞

0
k̄(t)dt =

N∑
n=0

kn
βn

N∏
k=n+1

pk , (14)

Σptot = P̄tot + 2

∫ ∞

0
Σkt(t)dt = P̄tot +

N∑
n=0

n∑
j=0

kn
βn

kj
βj

N∏
k=j+1

pk − P̄ 2
tot . (15)

The lower bound for the CV of the total number of P ∗ is

CVptot =

√
Σptot

P̄tot
≥

√
1 + N

P̄tot√
N

. (16)

Although the coefficient of variations CVptot and CVτ share the same lower bound 1/
√
N , in general,

minimal values for both cannot be achieved simultaneously. Indeed, whereas a minimal CVptot re-
quires kn/βn = const and pn = 1, a minimal CVτ is achieved for 1/βn = const and pn = 1. Thus,
by adjusting the activation rates kn one can have a minimal CVptot even when CVτ is far from being
minimal. Thus, a reliable R∗ lifetime is neither necessary nor sufficient for a reliable PDE activation.
For constant transducin activation rates (kn = k) we have almost linear relations P̄tot = kτ̄ , Σptot

and Σptot = P̄tot + k2Στ (see also [15]).

2.4 Modeling the spontaneous PDE activation

In addition to PDE activation after a photon absorption, PDE molecules activate and deactivate
spontaneously with Poisson rates νsp and µsp according to the biochemical reaction

P
νsp


µsp

P ∗
sp . (17)

Spontaneous PDE activation is an inconvenient mechanism, generating a background noise (dark
noise) that obscures the signal from a single photon absorption: the signal generated by a photon has
to overcome the dark noise amplitude[7]. However, spontaneous PDE activations are crucial because
they hydrolyze cGMP in the dark and are essential to guarantee a steady-state concentration of
cGMP in the transduction current in the dark.
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Using Eq. 17, the average steady-state number of spontaneously activated PDE in a compartment
is given by

P̄ ∗
sp,comp = 2ρpdeπR

2 νsp
µsp

, (18)

where ρpde is the PDE surface density and R is the compartment radius. For example, for toad rods,
assuming νsp = 4 × 10−4s−1 and µsp = 1.8s−1 [7], R = 3µm and ρpde = 100µm−2 (see Table 3), we
find P̄ ∗

sp,comp = 1.25. Fig 2D shows a simulation of the stochastic number of spontaneously activated
PDE in a mouse compartment with P̄ ∗

sp,comp = 0.9 and µsp = 12.4s−1 (see Table 3).
We use Eq. 17 together with the SSA Gillepie algorithm [17] to simulate the time course of the

stochastic number of spontaneously activated PDE in a compartment (Fig 2D).

2.5 Homogenization of the three-dimensional ROS geometry and reduction of
diffusion in a long cylinder

The outer segment (OS) is the sensory unit of the photoreceptor. The rod OS is divided by internal
parallel disks into compartments connected to each other through narrow gaps between the disk rim
and the OS membrane and through incisures (Fig. 3). A photon is absorbed by a rhodopsin pho-
topigment attached to the surface of a single internal disk. As discussed in the previous paragraphs,
Rhodopsin activation after a photon absorption triggers the activation of many PDE enzymes via a
G-protein (transducin) coupled amplification cascade. Because PDE and transducin molecules are
also attached to the disk surface, the activation process occurs on the internal disk surface, where
the photon has been absorbed (Fig 2A). An activated PDE hydrolyzes (kill) the cytosolic second
messenger cGMP that controls the opening of CNG ion channels in the OS membrane.

The compartmentalization of the OS restricts the diffusion of cGMP between neighbouring com-
partments, whereas diffusion within a compartment is not affected and leads to rapid transversal
equilibration. We therefore adopt the approximation of a transversally well stirred OS where the
three-dimensional geometry is reduced to an effective one-dimension model with an effective longi-
tudinal diffusion constant [19, 20]. We now describe this geometrical reduction as shown in fig 3
and the estimation of the cGMP hydrolysis rate using a general Narrow Escape Theory [21] in a flat
cylinder that involves two- and three-dimensional asymptotic estimates [14].

2.6 Computing the effective longitudinal diffusion constant

The model of diffusion reduction starts with considering Brownian particles in the OS, that are
driven by thermal noise and a trajectory in the cytoplasmic fluid is well described by the overdamped
approximation (Smoluchowski limit) of the Langevin equation. For a molecule located at position
X(t), the velocity satisfies the stochastic equation

γẊ + F (X) =
√
2γεẇ (19)

where F (x) are forces applied onto the particle, γ is the viscosity coefficient, ε = kT
m is the thermal

noise, and ẇ is the white noise produced by thermal collisions [20, 22].
To study equation (19), we make three assumptions: 1) particles do not bind; 2) in the time scale

of seconds, short range electrostatic interactions that arise from the charged disc membrane surfaces
[23] and/or charged particles in solution average and cancel out. As a consequence all electrostatic
terms are neglected and the force term F (x) in eq. 19 is set to zero; 3) particles do not permeate
across OS membranes.
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Fig. 2: Signal transduction and PDE activation. (A) Signal transduction cascade of a vertebrate
photoreceptor. (B) Schematic representation of deactivation of an activated rhodopsin following
multiple phosphorylations and arrestin binding [18]. (C) Stochastic simulations (black) of the number
of activated PDEs after a single photon absorption in a mouse rod, average (red) and the analytic
result for the mean (green). (D) Stochastic simulation of the number of spontaneously activated
PDEs in a mouse compartment withe a mean P̄ ∗

sp,comp = 0.9 and µsp = 12.4s−1. (E) Probability
of activated rhodopsin lifetime depending on the number of phosphorylation sites. (F) Mean to
standard-deviation ratio for activated PDEs plotted as a function of the mean PDE normalized by
its maximum value [15].
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A B

Fig. 3: PDE hydrolysis rate and homogenization. (A) Schematic representation of a cylindrical
compartment with an activated PDE on the surface. A diffusing cGMP trajectory in the cytosol is
terminated (hydrolyzed) when reaching the activated PDE site for the first time. (B) Schematic
representation of cone and rod outer segment structure used to compute an effective longitudinal
diffusion constant.

From the general theory of diffusion, it is well known that the probability density function (pdf)
of one molecule associated with eq. 1 satisfies the standard three-dimensional diffusion equation
inside the cytoplasmic fluid. Under the assumption of independent molecules, the concentration is
simply the product of the pdf by the number of molecule and satisfies the diffusion equation within
the OS:

∂c

∂t
= D∆c (20)

c(x, 0) = c0(x) (21)

where c0(x) is some initial concentration, and D is the diffusion constant

2.7 Longitudinal diffusion in rod outer segments

ROS consists of repeating spatial compartments, Uk Fig.3B. Each compartment comprises the dis-
tance from one disc surface to the comparable surface in the next disc. The repeat distance is l,
and it consists in two parts: the cytoplasmic space separating two adjacent discs (interdisc space,
dimension=l/2) and the disc itself (dimension=l/2). Diffusion between adjacent interdisc spaces
occurs either through disc incisures or the perimeter gap that separates disc edges from the plasma
membrane. The compartments’ radius is constant and denoted by r. We adopt the following nota-
tion: Nk is the number of free Brownian particles in the Uk compartment of volume Vk. The present
analysis originates from [20].

The objective of the following derivation is to compute the ROS longitudinal diffusion constant,
Dl, in terms of the OS’s structure. Variation in the number of particles in unit Uk equals the difference
of flux into compartments k-1 and k+1, that is

dNk(t)

dt
= −D[Jk − Jk+1] (22)
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By definition, Jk+1 is the flux between unit Uk and Uk+1 through Σk+1, the open surface that joins
them,

Jk+1 =

∫
Σk+1

∂c(x, t)

n(x)
dS (23)

where n(x) is the normal derivative pointing outside Uk and ∂Uk = Σk+1 ∪ Σk. In the time scale
of seconds, the concentration is assumed to be uniform within each Uk compartment. This assump-
tion is valid because: 1) diffusion within a compartment (transverse diffusion) is the standard two
dimensional diffusion process where the diffusion constant equals to the aqueous diffusion constant;
2) the ratio of the absorbing boundary surface divided by the reflective boundary surface of a given
compartment is small.

As a consequence, the diffusion along the longitudinal axis is much slower than along the trans-
verse axis. Finally since the concentration inside a compartment equilibrates quickly at the time
scale of seconds, the concentration can be considered to be uniform. Thus the flux through disk
incisures and the perimeter gap is the same and does not depend on the transverse spatial variable.

Combining eqs. 22 and 23 yields,

1

Vk

dNk(t)

dt
=

D

Vk
(nΣincs +Σg)(

∂c(xk+1, t)

∂x
− ∂c(xk, t)

∂x
), (24)

where Σincs is the surface area of a single disk incisures, n is the number of incisures and Σg is the
surface of the perimeter gap between the disk’s edge and plasma membrane. Σg = 2πrgw, where r is
the ROS radius and gw is the size of the perimeter gap. The concentration at points xk+1 = xk + l

and xk is evaluated by a Taylor expansion. At the first order, since c(xk, t) =
Nk(t)
Vk

, then

∂c(xk, t)

∂t
=

1

Vk

dNk(t)

dt
=

D

Vk
(nΣs +Σl)l

∂2c(xk, t)

∂x2k
. (25)

The translation invariance of the rod outer-segment geometry implies that the volume Vk of the
compartment Uk is constant with respect to k and equals to the free interspace volume (free volume
of the unit plus the free volume of the incisures)

Vk = πr2kl/2 + nVincs + Vg = πr2l/2 + (nΣs + 2πrgw)l/2, (26)

where Vincs is the volume of the incisure and Vg is the volume of the perimeter gap. Finally, eq. 25,
can be reduced to the form of the standard one dimensional diffusion equation, for x ∈ [0, L]

∂c(x, t)

∂t
= Dl

∂2c(x, t)

∂x2
, (27)

where the longitudinal diffusion constant is defined to be:

Dl =
D(nΣincs +Σg)l

πr2l/2 + (nΣincs +Σg)l/2
= 2D

1
πr2

nΣincs+Σg
+ 1

(28)

2.8 Longitudinal diffusion in cone outer segments (COS)

COS consists of repeating Uk compartments, each comprising the distance from the intracellular
surface of one membrane fold to the intracellular surface of the next one (Fig 3B). The repeat distance

11



is l and it consists of two segments: the membrane fold (size=l/2) and the distance separating one fold
from the next (size=l/2). The volume connecting adjacent folds can be very complicated, however
in average, we can assume that the geometrical shape is fixed and well approximated by a cylinder
of length=l/2and diameter δ.

To remember that δ is the diameter of a disk of area equal to the area of the real surface, we
will refer to δ as the “equivalent diameter”. The diameter of a fold at position xk is denoted by dk
and it increases linearly with the longitudinal coordinate as given by dk+1 = dk + d0, where d0is the
incremental distance.

Derivation of the longitudinal diffusion equation in COS proceeds through the same steps as
the derivation for ROS, but differs due the difference in the geometry. This difference is due to
variation of the spatial compartment Uk. In COS, the time variation in the particle number in the
Uk compartment is given by eq. 22 and the flux through the Σk+1 surface is given by eq. 23. From
these equations, the variation in time of the concentration in a COS compartment is given by:

1

Vk

dNk(t)

dt
=

1

Vk
(DΣk+1

∂c(xk+1, t)

∂n(x)
−DΣk

∂c(xk, t)

∂n(x)
) (29)

Since Σk+1 = Σk, using a Taylor expansion of the concentration c(x,t), we have:

∂c(xk, t)

∂t
=

1

Vk

dNk(t)

dt
=

DΣk+1l

Vk

∂2c(xk, t)

∂2xk
(30)

The area of the surface Σk+1 is given by Σk+1 = π(δ/2)2 and the volume is:

Vk = π(δ/2)2l/2 + π(dk/2)
2l/2 (31)

For dmin the smallest COS diameter (at its tip), dmax is the maximal COS diameter (at its base), L
is the COS length

α =
dmax − dmin

L
(32)

Because of the cone geometry, at position xk the cone diameter is dk = αxk + dmin, the longitudinal
diffusion equation can now be expressed as:

∂c(xk, t)

∂t
=

Dπ(δ/2)2l

π(δ/2)2l/2 + l/8π(αxk + dmin)2
∂2c(xk, t)

∂x2k
(33)

for x ∈ [0, L], the equation simplifies

∂c(x, t)

∂t
=

2Dδ2

δ2 + (xα+ dmin)2
∂2c(x, t)

∂x2
(34)

The longitudinal diffusion coefficient (which is now in one dimension a function of x ) is explicitly
given by

D(x) =
2Dδ2

δ2 + (xα+ dmin)2
. (35)
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2.9 Determination of the diameter function δ(x) from the COS structure

Using the COS structure, equation 33 can be modified, to include a spatial dependency in the δ
variable. Recall that the COS geometry is characterized by the following global parameters. L is
the Length, rbase is the radius at the base, rtip is the radius at the tip and α′ =

rbase−rtip
L . The

surface Σg(x) at the longitudinal position x, connecting adjacent folds is not circular, rather it is a
semicircular disk that surrounds half the perimeter of the membrane folds over the entire COS length
(Fig. 3B). Although by analyzing the electron Microscopy picture, Σg(x) fluctuates along the OS,
we will neglect such fluctuations compared to the mean.

If rm(x) is the radius up to the plasma membrane and rf (x) is the radius of the membrane fold
at position x, the surface Σg(x) (Fig. 3B) then the area of Σg(x) is

Σg(x) =
π

2
(rm(x)2 − rf (x)

2) (36)

For rtip ≤ rf (x) ≤ rbase, rf (x) = rtip + α′x and rm(x) = rf (x) + d, the gap between the closed loop
of a fold and the plasma membrane is about 100 ∆, that is d = rm − rf =0.01 µ is small compare to
rm. We can approximate Σg(x) by

Σg(x) = πdrf (x) = πd(rtip + (
rbase − rtip

L
)x) (37)

Let us define the diameter function δ(x) of a disk along the COS of the same area as Σg(x) by

Σg(x) = π(δ(x)/2)2 (38)

then

δ(x) = 2
√

d(rtip + α′x) (39)

Using the result of the previous section, we can now incorporate the small changes in the diameter
function δ(x) into the cone diffusion equation and equation (33) becomes

∂c(x, t)

∂t
=

2Dδ(x)2

δ(x)2 + (xα+ dmin)2
∂2c(x, t)

∂x2
(40)

with

δ(x) = 2
√

d(rtip + αx) (41)

An other derivation of this result using homogenization method can be found in [24].

3 Computing cGMP hydrolysis rates

Key parameters that control the CNG channel opening and the current response are the rates of
cGMP hydrolysis by spontaneously and light-activated PDE, denoted by ksp and kli that we shall
compute now.
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3.1 Rate of hydrolysis by spontaneously activated PDE

The rate of cGMP hydrolysis by a spontaneously activated PDE ksp is computed from formula [25, 19]

βd = kspP̄
∗
sp,comp . (42)

For example, for a toad rod with the experimental value βd = 1s−1 [16, 11] and P̄ ∗
sp,comp = 1.25 [7]

we find ksp ≈ 0.8s−1. For a mouse rod with βd = 4.1s−1 [26] and P̄ ∗
sp,comp = 0.9 (see further down)

we get ksp = 4.5s−1 (Fig. 3). The different values of ksp in toad and mouse might be due to the
temperature, due to the different encounter rates between PDE and cGMP, or due to differences in
the PDE enzyme between amphibians and mammals.

3.2 Computing the rate of hydrolysis by light-activated PDE from the Narrow
Escape theory

Light-activated PDE is one of the most efficient enzymes [27]. As a consequence, cGMP hydrolysis
by light-activated PDE is limited by the encounter rate kenc between an activated PDE molecule
diffusing on the disk surface and a cGMP molecule diffusing in the cytoplasms. Because cGMP
diffusion in the cytoplasm is much faster than PDE diffusion in the membrane (∼ 100µm2/s−1 vs
0.8µm2/s−1 [28], we can neglect PDE diffusion and assume that PDE is immobile. In that case, the
mean rate hydrolysis rate is inversely proportional to the mean first passage time (MFPT) a cGMP
molecule takes to find an activated PDE located on the surface of the compartment.

To estimate the encounter rate in a cylindrical compartment of radius R and height h, we compute
the first passage time of a diffusing cGMP molecule to hit a circular spot of radius a located on the
surface (Fig 3A). The radius a equals the reaction radius between activated PDE and cGMP. To derive
analytic expressions, we place the activated PDE molecule at the disk center. This assumption will
not much affect the leading order term, because in a two or three-dimensional space, the leading
order term of the mean first passage time to a small surface target does not depend on the position
of target [29]. The first passage time τ(r, z) (cylindrical coordinates with rotational symmetry) of a
cGMP molecule initially at position (r, z) satisfies the mixed boundary value problem [30]

Dg∆τ(r, z) = −1 , 0 < z < h , 0 ≤ r < R
τ(r, z) = 0 , z = 0 , r ≤ a

∂

∂z
τ(r, z) = 0 , z = 0 , r > a and z = h

∂

∂r
τ(r, z) = 0 r = R

(43)

Dg is the cGMP diffusion coefficient. To obtain the MFPT τ̄ , we average the solution τ(r, z) over a
uniform initial distribution. The result is [25]

kenc =
1

τ̄
=

Dg

R2

(
π
h

a

a0(h/a)√
2

+
4 ln(R/a)− 3

8

)−1

, (44)

where the function a0
(
h
a

)
/
√
2 ∈ [0.07, 0.25] is shown in (fig 2a of [14]. When h ∼ R, a0(

h
a ) ∼

1
4 . We

note that the log-contribution in expression originates from the degenerated geometry (flat cylinder).
An analytic closed representation of the function a0 is unknown.

We recall that general expression of the MFPT τ̄ depends on the initial position in the dimen-
sionless variables

x =
r

a
, y =

z

a
, α =

R

a
, β =

h

a
, |Ω| = |V |

a3
= πβα2 ,
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is

τ̂(x, y) =



∞∑
n=0

bn
I0(lnx)

I0(ln)
vn(y) + wi(x, y) , x ≤ 1

=
∞∑
n=0

an
F0(knx, knα)

F0(kn, knα)
un(y) +

lnx

2πβ
− x2 − 1

4|Ω|
, 1 ≤ x ≤ α,

(45)

where

u0 =
1√
2
, un(y) = cos (kny) (n ≥ 1) , vn(y) = sin(lny) (n ≥ 0) ,

kn =
nπ

β
, ln =

(n+ 1
2)π

β

(46)

and the modified Bessel functions are I0(x) and K0(x) and the relations [31] (I ′0(x) = I1(x), K
′
0(x) =

−K1(x), we obtain

pn(x) =
F0(knx, knα)

F0(kn, knα)
, (47)

with

F0(x, y) = I0(x)K1(y) +K0(x)I1(y) .

We recall that

wi(x, y) =
1

|Ω|

∞∑
n=1

cnJ0(znx)
cosh(zn(β − y))

cosh(znβ)
− x2 − 1

4|Ω|

=
1

|Ω|

∞∑
n=1

cnJ0(znx)

(
cosh(zn(β − y))

cosh(znβ)
− 1

)
,

(48)

where zn are the positive zeros of the Bessel function J0(x), and the coefficients cn are given by

cn =
2

J ′
0(zn)

2

∫ 1

0
J0(znx)

x2 − 1

4
xdx . (49)

With the relation

α0 = 0 , αn = −kn
F1(kn, knα)

F0(kn, knα)
(n ≥ 1) , βn = ln

I1(ln)

I0(ln)
(50)

we obtain a closed matrix equations for the coefficient an and bn

∞∑
m=0

(βn + αm)ξnmam =
∞∑

m=0

ξnmγm

∞∑
m=0

(βm + αn)ξmnbm = γn .

(51)
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where

ξnm =



2

β

ln
l2n − k2m

=
2

π

(n+ 1
2)

(n+ 1
2)

2 −m2
, m ≥ 1

√
2

βln
=

√
2

π

1

n+ 1
2

, m = 0

(52)

is an orthogonal matrix. It is possible to solve these matrix equations by truncating the system at
a certain n leading to an approximated solution for an resp. bn. This will lead to an approximation
for the NET τ̂(x, y) [14].

The encounter rate is given by relation 44 and clarifies how it depends on the underlying geomet-
rical and diffusion properties. For example, for a toad rod with R = 3µm we compute kenc ≈ 2.9s−1,
and for a mouse with R = 0.7µm we find kenc ≈ 61s−1 (with a = 3nm, h = 15nm and a0(h/a) ≈ 0.7).
As it turn out, the dependency of kenc on the OS geometry is crucial to understand how many ac-
tivated PDE are necessary to generate a signal that overcomes the noise. For mouse, the calculated
rate kenc = 61s−1 for mouse is close to the vaue 43s−1 extracted from experimental data [26].

4 Modeling the dynamics of cGMP and calcium ions

4.1 Coarse-grained model for cGMP dynamics

This part of the model consists in first considering separately the dynamics occurring in each compart-
ment: synthesis and hydrolysis of cGMP and second to couple cGMP to neighboring compartments
through the reduced diffusion derived in paragraph 2.6.

The biochemistry can be described as follows: cGMP synthesis is catalyzed by guanylyl cyclase
(GC) that are uniformly distributed on the surface of the disks. The synthesis rate depends on calcium
through Ca2+-sensitive guanylyl cyclase activating proteins (GCAPs) that inhibit GC at high Ca2+

concentration [32, 33, 34, 35]. The calcium dependent cGMP synthesis rate in compartment n is
described by the function

αs(n, t) = αmax

(
rα + (1− rα)

Knα
α

Knα
α + c(n, t)nα

)
, (53)

where c(n, t) is the free Ca2+ concentration in compartment n, αmax is the maximal synthesis rate
for low free calcium, rα = αmin

αmax
is the ratio between minimal and maximal synthesis rate, Kα is the

calcium concentration for which the synthesis rate is (αmax +αmin)/2, and nα is the Hill coefficient.
The rate of cGMP hydrolysis depends on the number of spontaneously activated PDE P ∗

sp(n, t)
and the number of light-activated PDE P ∗

li(n, t),

αh(n, t) = kspP
∗
sp(n, t) + kliP

∗
li(n, t) . (54)

ksp is the rate constant for a single spontaneously activated PDE, and kli the diffusion limited rate
constant for light activated PDE, for which we use the encounter rate computed in Eq. 44.

The longitudinal cGMP diffusion between compartments occurs through the effective longitudinal
diffusion constant Dg,l < Dg, where Dg is the fast cytosolic diffusion constant [20]. By applying Ficks
law to model the longitudinal flux between neighboring compartments separated by the distance h+w
(compartment height plus disk width) we get the discrete flux

jd,g(n, t) =
Dg,l

h(h+ w)
(g(n+ 1, t) + g(n− 1, t)− 2g(n, t)) , (55)
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where g(n, t) is the cGMP concentration in compartment n. Finally, the dynamics of cGMP across
the ROS satisfies the equation

d

dt
g(n, t) = jd,g(n, t) + α(n, t)−

(
kspP

∗
sp(n, t) + kliP

∗
li(n, t)

)
g(n, t) . (56)

4.2 Reduced model for calcium dynamics

To model Ca2+ dynamic, we take into account the effective longitudinal diffusion between compart-
ments, the exchange between the OS and the extracellular medium through cGMP gated channels
and Ca2+Na+K+ exchangers, and the buffering activity. The model is presented now.

4.3 Modeling calcium buffers

In darkness, there a steady state concentration of free calcium cd ≈ 0.3µM [36] that corresponds on
average to ∼ 3.3 ions in a compartment. This number is surprisingly small, given that many feedback
process are regulated by Ca2+. However, there are many Ca2+ binding proteins in the OS that
contribute to buffer calcium and increase the amount of Ca2+ present in the OS, e.g recoverin, GCAPs
and calmodulin. For example, the concentration of recoverin in a mammalian rod is ∼ 600µM [36],
around 2000 times larger than the free calcium concentration; and the GC membrane concentration
∼ 50µm−2 [36] corresponds to ∼ 150 enzymes in a mouse compartment, around 40 times more than
the number of free calcium ions.

In that model, we use the simplest buffering scenario: the buffering activity is much faster than
the time scale where the free Ca2+ concentration fluctuates, and we use a linear relation between
buffered and free Ca2+, valid if the amount of buffered Ca2+ is small compared to the total buffer
capacity. Hence, we consider that the number of bound calcium is

cb(n, t) = Bcac(n, t) (57)

with the buffering capacity is Bca.

4.4 Dynamics of calcium exchange via channels and exchangers

Free internal Ca2+ ions are exchanged between the OS and the extracellular medium through cGMP
gated channels and Ca2+Na+K+ exchangers. The Ca2+ influx through the CNG channels depends
on the probability pch(n, t) that a channel is open, which is a function of the local cGMP concentra-
tion:

pch(n, t) =
g(n, t)nch

g(n, t)nch +Knch
ch

. (58)

The Ca2+−efflux through exchangers depends on the free concentration c(n, t) and the exchanger
saturation level, leading to the relation

pex(n, t) =
c(n, t)

c(n, t) +Kex
. (59)

The net local Ca2+ membrane flux is

Jca(n, t) = Jch,ca(n, t) + Jex,ca(n, t) = Jch,ca,maxpch(n, t) + Jex,ca,maxpex(n, t) . (60)
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The inward current through the CNG channels is carried by both ions Na+ and Ca2+

Ich(n, t) = Ich,na(n, t) + Ich,ca(n, t) =
Ich,ca(n, t)

fca
= −

2FJch,ca(n, t)

fca
, (61)

where F is the Faraday constant. There is only a fraction fca ∼ 0.1 − 0.15 of the channel current
carried by Ca2+ ions [36]. The extrusion of a single Ca2+ ion by the exchanger is accompanied by
the influx of four Na+ ions and the efflux of one K+ [37]. Thus, the extrusion of one Ca2+ leads to
the influx of a single positive charge, producing the net exchanger current

Iex(n, t) = FJex,ca(n, t) . (62)

Using Eq. 61 and Eq. 62, we obtain for the local current

I(n, t) = Ich(n, t) + Iex(n, t) = F
(
− 2

fca
Jch,ca(n, t) + Jex,ca(n, t)

)
(63)

(see below for the analytical expressions). At steady-state in darkness, the calcium influx and efflux
are balanced thus

Jch,ca(n) + Jex,ca(n) = 0. (64)

From Eq. 63, we obtain the expression for the dark current associated with a single compartment

Icomp,d = −F
(

2

fca
+ 1

)
Jch,ca,comp,d = F

(
2

fca
+ 1

)
Jex,ca,comp,d . (65)

We can use this result to express the calcium fluxes as a function of Icomp,d,

Jch,ca(n, t) = Jch,ca,comp,d
Jch,ca(n, t)

Jch,ca,comp,d
= −

Icomp,d

F
fca

fca + 2

pch(n, t)

pch,d

Jex,ca(n, t) = Jex,ca,comp,d
Jex,ca(n, t)

Jex,ca,comp,d
=

Icomp,d

F
fca

fca + 2

pex(n, t)

pex,d
,

(66)

where gd and cd are the mean concentrations in darkness and

pch,d =
gnch
d

gnch
d +Knch

ch

and pex,d =
cd

cd +Kex
. (67)

Using Eq. 66 in Eq. 60 we obtain

Jca(n, t) = Vcompϕ

(
pch(t)

pch,d
− pex(t)

pex,d

)
, (68)

where we use the notation to connect to each compartment: Ios,d = NcompIcomp,d, Vos = NcompVcomp

and

ϕ =
fca

fca + 2

|Icomp,d|
VcompF

=
fca

fca + 2

|Ios,d|
VosF

. (69)

For example, in a mouse rod with a dark current Ios,d = 16pA and a cytosolic volume Vos ≈ 18µm3 =

18× 10−15l [36] we find ϕ ≈ 500µM
s = 0.5µM

ms .
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4.5 Mass-action equation for the free Ca2+ concentration

The longitudinal calcium diffusion proceeds with an effective diffusion constant Dc,l. By considering
buffering and the diffusion exchanges, we obtain for the free calcium concentration the equation

d

dt
c(n, t) = jd,c(n, t) +

ϕ

Bca + 1

(
pch(t)

pch,d
− pex(t)

pex,d

)
. (70)

with the exchange rate

jd,c(n, t) =
1

Bca + 1

Dc,l

h(h+ w)
(c(n+ 1, t) + c(n− 1, t)− 2c(n, t)) , (71)

4.6 Coupled system of equations for cGMP and calcium currents

We scale the various quantities using the mean dark concentrations gd and cd

ĝ(n, t) =
g(n, t)

gd
, ĉa(n, t) =

c(n, t)

cd
,

kα =
Kα

cd
, kex =

Kex

cd
, kch =

Kch

gd
.

(72)

The equations for the scaled cGMP and Ca2+ concentrations are

dĝ(n, t)

dt
= jd,g(n− 1, n, n+ 1, t) + βd

rα + (1− rα)
knα
α

knα
α + ĉ(n, t)nα

rα + (1− rα)
knα
α

knα
α +1

−
(
kspP

∗
sp(n, t) + kliP

∗
li(n, t)

)
ĝ(n, t)

dĉ(n, t)

dt
= jd,c(n− 1, n, n+ 1, t) + γd

(
pch(n, t)

pch,d
− pex(n, t)

pex,d

)
.

(73)

with

βd = kspP̄
∗
sp,comp

pch(n, t)

pch,d
=

1 + knch
ch

ĝ(n, t)nch + knch
ch

ĝ(n, t)nch

pex(n, t)

pex,d
=

1 + kex
ĉ(n, t) + kex

ĉ(n, t) ,

γd =
1

Bca + 1

ϕ

cd
=

1

Bca + 1

fca
fca + 2

|Ios,d|
cdVosF

.

jd,g(n− 1, n, n+ 1, t) =
Dg,l

h(h+ w)
(ĝ(n+ 1, t) + ĝ(n− 1, t)− 2ĝ(n, t))

jd,c(n− 1, n, n+ 1, t) =
1

Bca + 1

Dc,l

h(h+ w)
(ĉ(n+ 1, t) + ĉ(n− 1, t)− 2ĉ(n, t))

(74)

By inserting Eq. 66 into Eq. 63, we obtain the normalized current

Î(n, t) =
Icomp,d − I(n, t)

Icomp,d
= 1− 2

fca + 2

pch(n, t)

pch,d
+

fca
fca + 2

pex(n, t)

pex,d
. (75)

The overall normalized current from Ncomp compartments is

Îos(t) =
Ios,d − Ios(t)

Ios,d
= 1− 1

Ios,d

Ncomp∑
n=1

I(n, t) = 1− 1

Ncomp

Ncomp∑
n=1

Î(n, t). (76)

The parameter of the simulations are summarized in table 2:
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Table 2: Parameters for the photocurrent simulation

Parameter Definition

Ncomp Number of compartments

R OS radius

h Compartment height

w Disk width

a Reaction radius for cGMP hydrolysis by an activated PDE molecule

kenc Encounter rate between a cGMP and an activated PDE molecule

kli Rate constant for cGMP hydrolysis by a light-activated PDE

ksp Rate constant for cGMP hydrolysis by a spontaneous activated PDE
Determined from the equation βd = kspP̄

∗
sp,comp

βd cGMP hydrolysis rate in the dark

gd cGMP concentration in the dark

cd Free calcium concentration in the dark

Ios,d OS current in the dark

fca Fraction of current carried by calcium

Bca Buffering capacity for calcium

Kα Michaelis constant for cGMP synthesis

Kch Michaelis constant for channel opening

Kex Michaelis constant for calcium exchanger

nα Hill coefficient for cGMP synthesis

rα Ratio of minimal to maximal cGMP synthesis rate

nch Hill coefficient for channel opening

Dg Radial cGMP diffusion constant

Dca Radial calcium diffusion constant

Dg,l Effective longitudinal cGMP diffusion constant

Dca,l Effective longitudinal calcium diffusion constant

γd Rate for calcium exchange
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5 Stochastic simulations of the dark noise and the single photon
response (SPR)

We now describe the simulation method of the SPR with dark noise[38]. For each compartment, we
use the SSA algorithm [17] to generate spontaneously activated PDE P ∗

sp(n, t) from Poisson activation
and deactivation rates νsp and µsp. To model the single-photon response, we simulated the number
of light-activated PDE P ∗

li(t) in the compartment where a photon is absorbed. For simplicity, we
assume that a photon is absorbed at the center of the outer segment. However, a different location
would not have a significant effect on the results. Finally, the functions P ∗

sp(n, t) and P ∗
li(t) are input

to the system of equations for calcium and cGMP Eq. 73, from which we can compute the normalized
currents Î(n, t) and Îos(t).

Combining all previous results into an integrated model, we can simulate a single-photon response
with intrinsic noise. We present 20 single-photon responses (Fig. 4A) obtained from suction electrode-
recordings in a WT mouse rod that we used to validate the model. Suction-electrode recording are
used because cells could be held for longer times with this method, making it possible to obtain
sufficient data from single cells over a period of several minutes. The data in Fig. 4A are representative
of recordings from 8 rods, which all gave similar results. To generate the calculated single-photon
response curves shown in Fig. 4B, we used simulations of light-activated PDE from Fig. 2C.

Under the experimental recording conditions, the decay time of light-activated PDE is about
200ms [39, 40], and the mean lifetime of excited rhodopsin is of the order of 40 ms [41, 39]. Further-
more, to reconcile the experimental and simulated response amplitude, we increased the transducin
activation rates by a factor 1.75 compared to the toad simulations shown in Fig. 4B, which could be a
result of the higher body temperature [42]. In addition, following this procedure, the average number
of light-activated PDE increases from a value around 6 to around 8.2. The simulated responses in
Fig. 4B show good agreement with the experimental recordings in Fig. 4A; however, the simulated
dark noise (Σsim = 2.3%) is higher compared to the recorded dark noise (Σdark = 1.6%). A strong
calcium feedback with no buffering (Bca = 1) and no saturation in cGMP synthesis at high calcium
concentrations (rα = 0) reduces both the noise level and the peak amplitude by around 50% [38].

6 Statistical analysis and parameter estimations

The current fluctuations in darkness (absence of photon) generate a noise called dark noise, the
parameters of which can be extracted from the analytical expression of the power spectrum. We derive
here such expression by considering that the dark noise is generated by the spontaneous activations
and deactivations of PDE. From the expression of the dark noise, we estimate the spontaneous PDE
activation process from electrophysiological recordings in the absence of photon response.

Using the model presented in the the previous section, in darkness there not light activated PDE
thus P ∗

li(n, t) = 0. The average value of the scaled quantities CGMP and calcium ĝ(n, t), ĉ(n, t) and

Î(n, t) is one. Using a linear noise expansion of the Fourier transform of Eq. 73, we obtain

δĉ(ω) =

Ncomp∑
n=1

δĉ(n, ω) =
γd

γdξex − iω
ξchδĝ(ω) , (77)

δĝ(ω) =

Ncomp∑
n=1

δĝ(n, ω) =
βd

βd − iω − βdξα
γdξch

γdξex−iω

Ncomp∑
n=1

δP̂ ∗
sp(n, ω) . (78)
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with

ξα = −nα
1

knα
α + 1

(1− rα)
knα
α

knα
α +1

rα + (1− rα)
knα
α

knα
α +1

, ξch = nch
knch
ch

1 + knch
ch

, ξex =
kex

1 + kex
(79)

The overall current fluctuation (Eq. 76) is

δÎos(ω) =
1

Ncomp

(
2

fca + 2
+

fca
fca + 2

γdξex
γdξex − iω

)
ξchδĝ(ω)

= χI(ω)
1

Ncomp

Ncomp∑
n=1

δP̂ ∗
sp(n, ω) (80)

where the transfer function is defined by

χI(ω) =

(
1 +

fca
fca + 2

iω

γdξex − iω

)
ξchβd

βd

(
1− γ2

dξαξchξex
γ2
dξ

2
ex+ω2

)
− iω

(
1 + βdγdξαξch

γ2
dξ

2
ex+ω2

)
≈ − ξchβd

βd

(
1− γ2

dξαξchξex
γ2
dξ

2
ex+ω2

)
− iω

(
1 + βdγdξαξch

γ2
dξ

2
ex+ω2

) . (81)

Because PDE activations in different compartments are independent, the spectrum of the overall
scaled current Îos(t) is computed from the Lorentzian of a Poisson process (see section2.4):

SÎos
(ω) = |χI(ω)|2

1

Ncomp
ŜP ∗

sp
=

1

Ncomp

|χI(ω)|2

P ∗
sp,comp

4µsp

µ2
sp + ω2

=
|χI(ω)|2

P ∗
sp,os

4µsp

µ2
sp + ω2

. (82)

The current variance is defined by

ΣÎos
=

1

2π

∫ ∞

0
SÎos

(ω)dω . (83)

6.1 Power spectrum and variance for the mutant GCAPs−/− rod

In the mutant mice GCAPs−/−, the Ca2+−feedback on cGMP synthesis is abolished, which can be
modeled by setting nα = 0 in Eq. 73. With ξα = 0, the expression for χI(ω) in Eq. 81 simplifies to

χI(ω) = − ξchβd
βd − iω

. (84)

In that case, the power spectrum and variance of the scaled current reduce to

SÎos,gcap
(ω) =

4ξ2ch
P̄ ∗
sp,osµsp

β2
dµ

2
sp

(β2
d + ω2)(µ2

sp + ω2)
(85)

ΣÎos,gcap
=

ξ2ch
P̄ ∗
sp,os

1

1 +
µsp

βd

=
ξ2ch

NcompP̄ ∗
sp,comp

1

1 +
µsp

βd

. (86)

With the parameter values for mouse given in Table 4, we obtain ΣÎos,gcap
≈ 0.055, which agrees

with the value 0.056 extracted from the GCAPs−/− simulations [38]. Various parameters are given
in table 3 below:
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Table 3: Parameters used to simulate PDE activation

Parameter Toad Mouse

P̄ ∗
sp,comp 1.25 0.9

P̄ ∗
li,max 150 8.2

µsp(s
−1) 1.8 12.4

µp (s−1) 0.625 5

τrh (s) 3 0.04

N 6 6

kN (s−1) 200 350

ω 0.1 0.1

µt (s
−1) 300 300

6.2 Power spectrum and variance with fast calcium dynamics

The role of calcium feedback on cGMP synthesis is to reduce the current fluctuations. This feedback
is efficient when the calcium dynamics is fast compared to the underlying PDE fluctuations, such
that calcium changes can be used to monitor the PDE changes.

To estimate how much feedback reduces the current variance, we derive analytic expressions for
the fast calcium dynamics that we compare to the ones for GCAPs−/− rods with no calcium feedback.
For example, in a mouse rod, the rate constant γd governing the calcium dynamics in Eq. 73 has a
value γd ≈ 1670s−1 (Eq. 74 with no buffering, Bca = 1). Adding buffers (Bca > 1) slows down the
dynamics and reduces the feedback.

For γd ≫ ω
ξex

and γd ≫ βdξαξch Eq. 81 simplifies to

χI(ω) ≈ −1

ζ

ξchβ̃d

β̃d − iω
with ζ = 1− ξαξch

ξex
and β̃d = βdζ . (87)

The spectrum and variance of the dark noise with fast calcium dynamics is te product of two Loren-
zians:

SÎos,fastCa(ω) =
1

ζ2
4ξ2ch

P̄ ∗
sp,osµsp

β̃2
dµ

2
sp

(β̃2
d + ω2)(µ2

sp + ω2)
(88)

ΣÎos,fastCa =
1

ζ2
ξ2ch

P̄ ∗
sp,os

1

1 +
µsp

β̃d

. (89)

Compared to GCAPs−/− rods, calcium feedback reduces the amplitude of the dark noise by a factor

ρ =

√
ΣÎos,gcap

ΣÎosfastCa

= ζ

√√√√1 +
µsp

β̃d

1 +
µsp

βd

. (90)

With mouse parameters from Table 4 we obtain ρ ≈ 2.5 with Bca = 80 and rα = 0.066, and ρ ≈ 4.4
with strong feedback achieved for Bca = 0 and rα = 0. From experimental recordings and dark
noise simulations shown in Fig 4 and Fig 5, we find ρ = 0.056/0.023 ≈ 2.4, in agreement with the
theoretical value.
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7 Parameter extraction from dark noise recordings

Experimental recordings of dark noise in wild type (WT) and GCAPs−/− knockout mice together
can be used with expressions for the power spectrum and variance to evaluate unknown parameters
invivo.

7.1 Estimation of µsp and P ∗
sp,comp from dark noise recordings in GCAPs−/− mice

For GCAPs−/− rods, the power spectrum divided by the variance (Eq. 85 and Eq. 86) reduces to a
double Lorentzian that depends only on the parameters µsp and βd:

ŜÎos
(ω) = 4

(βd + µsp)βdµsp

(β2
d + ω2)(µ2

sp + ω2)
(91)

Because β = 4.1s−1 [26] is known for a mouse rod, we used Eq. 91 to extract the unknown spontaneous
PDE deactivation rate µsp.

To extract µsp, we used the current recordings from GCAPs−/− mouse rods recorded in darkness
and bright light conditions (Fig. 4A). The latter is needed to estimate the instrumental noise, since
in bright light all channels are closed and the recorded noise is only instrumental noise [7]. Because
instrumental and biological noise are independent, the dark noise power spectrum and variance
can be computed by subtracting the instrumental values. Using eq. 91 to fit the dark-light power
spectrum scaled by the dark-light variance, it is possible to obtain an averaged value µsp = 12.4s−1.
Subsequently, with the values of µsp and βd, we used Eq. 86 and fitted the unknown mean number
of spontaneously activated PDE per compartment P̄ ∗

sp,comp using the measured dark-light variance
(with Ncomp = 810). We obtained an average value P̄ ∗

sp,comp = 0.9.

7.2 Estimation of the parameters rα and Bca from dark noise recordings in WT
mice

The single-photon response and the dark noise amplitude strongly depend on the calcium feedback.
Eq. 90 shows that the dark noise amplitude can be reduced by a factor 4.4 due to calcium feedback.
By analyzing experimental data from WT and GCAPs−/− mice, we found a factor around 2.4 (Fig 4
and Fig 5). The strength of the calcium feedback depends on rα and Bca (feedback on cGMP
synthesis and buffering capacity). Unfortunately, both values are not precisely known. Most models
assume rα = 0 [43, 44, 36], in [45] a value rα = 0.072 is used. In [36, 43] a buffering capacity Bca = 50
is assumed, Bca = 20 is used in [45] and Bca = 100 in [44].

To estimate rα and Bca, we computed the dark-light power spectrum from dark noise recordings
in WT rods (Fig. 5A). We fitted rα and γd using Eq. 82 and then used Eq. 74 to compute Bca from
γd. By fitting the spectrum we obtained rα = 0.066 and γd = 23.4s−1. With the experimental
mean dark current of 17.9pA, we then computed Bca = 80, which is in agreement with experimental
recordings [34, 46].

We used these values to simulate the dark noise in a WT rod (Fig. 4B). We quantified the agree-
ment between data and simulations by comparing the probability distributions of the recorded and
simulated current amplitudes (Fig. 4C), and by comparing the experimental dark-light spectrum with
the spectrum extracted from the simulations and with the analytical expression in Eq. 82 (Fig. 5D).
Although we find very good agreement for the power spectra (Fig. 5D), the standard deviation of
the simulated current amplitude (Σsim = 2.3%) is about 15% smaller than the experimental value
(Σdark = 2.7%). This difference may result from instrumental noise that increases the recorded noise
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Fig. 4: Single photon responses of mouse and toad rods. (A) Electrophysiological recordings
of single-photon responses (black) from a mouse rod together with the mean response (blue). Mean
(red) and the deterministic simulation (green) from B are superimposed for comparison. Currents
have been normalized to the circulating current in darkness. (B) Single-photon response simulations
for a mouse rod(black) with mean (red) and a simulation of the mean response from a deterministic
model without noise (green). (C) Rods from frog (toad) and mouse showing the large size difference
[38]. (D) Single-photon response simulations for a toad rod (βd = 1s−1). Note the much larger
duration compared to B.
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Table 4: Parameter values used to simulate the photocurrent

Parameter Toad Mouse

Ncomp 2000 810

R (µm) 3 0.7

h (nm) 15 15

w (nm) 15 15

a (nm) 3 3

kenc(s
−1) 2.9 61

kli(s
−1) 2.9 61

βd (s−1) 1 4.1

gd (µM) 3 3

cd (µM) 0.3 0.3

Ios,d (pA) 40 17.9

fca 0.12 0.12

γd (s−1) 92 23.4

Bca 1 80

Kα (µM) 0.15 0.1

Kch (µM) 20 20

Kex (µM) 1.6 1.6

nα 2 2

rα 0 0.066

nch 3 3

Dg (µm2s−1) 150 150

Dg,l (µm
2s−1) 20 40

Dca,l (µm
2s−1) 20 20
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in darkness, which is not accounted for in the simulation. This effect is much larger for WT than
GCAPs−/− rods because WT rods have less intrinsic dark noise.
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Fig. 5: Dark noise recordings and simulations for a GCAPs/ mouse rod. (A) Electro-
physiological current recordings in complete darkness (black) and in bright light (red). Bright light
recordings are used to extract the instrumental noise. (B) Simulations of the current fluctuations
in darkness (dark noise). (C) Probability distribution of the amplitudes from panels (A) and (B)
together with Gaussian fits. (D) Comparison of the darklight power spectrum from A with the power
spectrum from B and analytic result.

8 Conclusion

Thirty years of modeling of single photon response connected to the statistical analysis of electro-
physiological recordings led recently to the conclusion that the biochemistry and geometry of the rod
may have evolved and adapted together to insure single-photon detection across species [18, 38], but
it is unclear whether these adaptations occurred independently or were coupled together by some
other mechanism. This adaptation reveals that smaller rod and not a scaling copy larger one.

To conclude, the remarkable sensitivity of rods to single photons reveals a selection principle of
evolution: an increase in the expression level of PDE compensate for the reduction in outer segment
geometry. Mouse rod can respond to a single photon by closing approximately the same percentage
of outer segment channels as in a toad, but it can use many fewer G proteins and effector molecules
and achieve higher temporal resolution. How the biochemistry of transduction and the geometry of
the outer segment may have evolved together to ensure the detection of single photons is certainly a
new question to address. The surprise of these research is that the conclusion about the co-evolution
of the cel geometry and the biochemistry came from the development of stochastic modeling of the
underlying molecular processes. Similar modeling are expected in many other transduction processes
such as heat sensing, olfaction, auditory transduction. The diversity of the cell geometries involved in
transduction, that have evolved for billions of years remains an open question for modern geometry,
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but the physiology needs to be taken in account.
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